

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Evidence of Surface Diffusion of Helium

Sun-Tak Hwang^a; Karl Kammermeyer^a

^a Department of Chemical Engineering, University of Iowa, Iowa City, Iowa

To cite this Article Hwang, Sun-Tak and Kammermeyer, Karl(1967) 'Evidence of Surface Diffusion of Helium', *Separation Science and Technology*, 2: 4, 555 — 557

To link to this Article: DOI: 10.1080/01496396708049720

URL: <http://dx.doi.org/10.1080/01496396708049720>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

COMMUNICATION

Evidence of Surface Diffusion of Helium

The importance of the surface diffusion in gas separation by means of permeation through a microporous membrane was emphasized in recent publications (1,2). The significance of the surface flow of helium was stressed (2), but the experimental findings were not sufficiently pronounced to convince investigators in this particular area of study. In the present paper, positive experimental evidence of the surface diffusion of helium is given, and this fact supports the previously proposed general theory.

If the observed flow rate is assumed as the sum of gas-phase flow and surface flow in the study of gas permeation through a microporous medium, one should have a reasonable method to separate the surface flow from the total flow, which is observed experimentally. The conventional method which utilizes the helium flow to estimate the gas-phase flow is in principle incorrect. This fact was pointed out in previous publications (1,2), but the minimum point of the $Q\sqrt{MT}$ value for helium was not located with adequate accuracy in the temperature range covered by the previous studies. That is, the $Q\sqrt{MT}$ value for helium kept decreasing as temperature went down as far as the liquid-nitrogen temperature, 77.4°K, which up to now has been the lowest attainable temperature. Therefore, helium was the only gas which did not show pronounced surface flow at the lowest temperature employed. Consequently, it was obvious that a further lowering of temperature would be desirable to observe the minimum value of $Q\sqrt{MT}$ and the expected steep increase of surface flow, if the behavior of helium were the same as those of other gases.

This experimental difficulty was easily solved when the Bendix Corporation, Davenport, Iowa, offered their help, providing liquid hydrogen and giving essential assistance. Thus the flow apparatus at the University Laboratories was moved to Davenport and installed there in a liquid-hydrogen-handling facility.

The bath temperature of liquid hydrogen at atmospheric pressure is 20.4°K. Since this temperature is so low, a slight error in tempera-

ture would cause a large change in the calculation of the permeability. This possibility definitely exists in any experimental determination.

Easy handling of the diffusion cell at the cryogenic temperature was achieved by constructing the whole unit from Pyrex glass. Thus, not only leakproof sealing was achieved, but also the least thermal expansion of the material. No evidence of breakage or damage of the cell was observed during the experiments. The flow data at higher temperatures after the cryogenic experiments proved that the porous Vycor glass was not changed in any way.

The experimental value of the helium permeability at 20.4°K was found to be 7.032×10^{-5} std cc-cm/sec-cm²-cm Hg. This gives the $Q\sqrt{MT}$ value of

$$6.355 \times 10^{-4} \left(\frac{\text{std cc-cm}}{\text{sec-cm}^2\text{-cm Hg}} \right) \left(\frac{\text{g} \cdot \text{°K}}{\text{g mole}} \right)^{1/2}$$

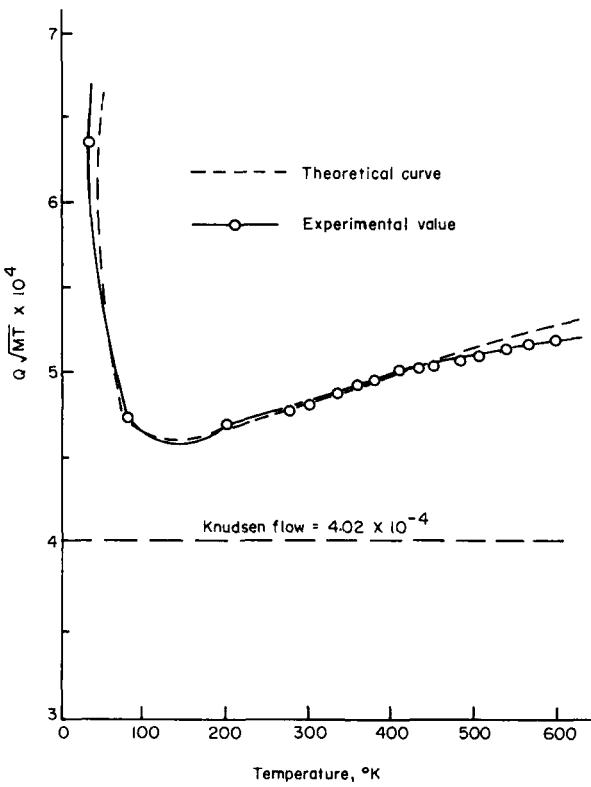


FIG. 1. Helium flow through porous Vycor glass.

Figure 1 shows the experimental values and predicted values of $Q\sqrt{MT}$ based on the flow data at higher temperatures. The minimum of $Q\sqrt{MT}$ occurred near 100°K. This compares with the previous prediction (1) of 127°K. But the significant fact is that the $Q\sqrt{MT}$ value, which is a measure of the deviation from the Knudsen equation, does show a minimum when it is plotted against temperature. The value of $Q\sqrt{MT}$ at 20.4°K is further positive evidence of the surface diffusion of helium.

As a conclusion of the present study, it is recommended that the *total helium permeability* should not be used in the estimation of the Knudsen flow. The true, gas-phase flow (Knudsen flow) can only be obtained by studying the temperature effect (1,2) (see Fig. 1).

Acknowledgments

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

Also, the assistance of the Instruments and Life Support Division of the Bendix Corp., in particular of Dr. B. J. Sollami, was essential in carrying out the experiments.

List of Symbols

Q	permeability, $\frac{\text{std cc-cm}}{\text{sec-cm}^2\text{-cm Hg}}$
M	molecular weight
T	absolute temperature, °K

REFERENCES

1. S.-T. Hwang and K. Kammermeyer, *Can. J. Chem. Eng.*, 44, 82 (1966).
2. S.-T. Hwang and K. Kammermeyer, *Separation Sci.*, 1(5), 629 (1966).

SUN-TAK HWANG
KARL KAMMERMEYER

Department of Chemical Engineering
University of Iowa
Iowa City, Iowa

Received by editor April 27, 1967
Submitted for publication May 15, 1967